Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 176: 105939, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462718

RESUMO

A key challenge in developing diagnosis and treatments for Alzheimer's disease (AD) is to detect abnormal network activity at as early a stage as possible. To date, behavioral and neurophysiological investigations in AD model mice have yet to conduct a longitudinal assessment of cellular pathology, memory deficits, and neurophysiological correlates of neuronal activity. We therefore examined the temporal relationships between pathology, neuronal activities and spatial representation of environments, as well as object location memory deficits across multiple stages of development in the 5xFAD mice model and compared these results to those observed in wild-type mice. We performed longitudinal in vivo calcium imaging with miniscope on hippocampal CA1 neurons in behaving mice. We find that 5xFAD mice show amyloid plaque accumulation, depressed neuronal calcium activity during immobile states, and degenerate and unreliable hippocampal neuron spatial tuning to environmental location at early stages by 4 months of age while their object location memory (OLM) is comparable to WT mice. By 8 months of age, 5xFAD mice show deficits of OLM, which are accompanied by progressive degradation of spatial encoding and, eventually, impaired CA1 neural tuning to object-location pairings. Furthermore, depressed neuronal activity and unreliable spatial encoding at early stage are correlated with impaired performance in OLM at 8-month-old. Our results indicate the close connection between impaired hippocampal tuning to object-location and the presence of OLM deficits. The results also highlight that depressed baseline firing rates in hippocampal neurons during immobile states and unreliable spatial representation precede object memory deficits and predict memory deficits at older age, suggesting potential early opportunities for AD detecting.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças
2.
Acta Neuropathol Commun ; 10(1): 182, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529803

RESUMO

The long-lived Chilean rodent (Octodon degus) has been reported to show spontaneous age-dependent neuropathology and cognitive impairments similar to those observed in human AD. However, the handful of published papers on degus of differing genetic backgrounds yield inconsistent findings about sporadic AD-like pathological features, with notably differing results between lab in-bred degus versus outbred degus. This motivates more extensive characterization of spontaneously occurring AD-like pathology and behavior in degus. In the present study, we show AD-like neuropathological markers in the form of amyloid deposits and tau abnormalities in a cognitively impaired subset of aged outbred degus. Compared to the aged degus that show normal burrowing behavior, the age-matched degus with burrowing behavior deficits correlatively exhibit detectable human AD-like Aß deposits and tau neuropathology, along with neuroinflammatory markers that include enhanced microglial activation and higher numbers of reactive astrocytes in the brain. This subset of cognitively impaired aged degus also exhibits cerebral amyloid angiopathy and tauopathy. We find robust neurodegenerative features in behaviorally deficient aged degus, including hippocampal neuronal loss, altered parvalbumin and perineuronal net staining in the cortex, and increased c-Fos neuronal activation in the cortex that is consistent with the neural circuit hyperactivity reported in human AD patients. By focusing on the subset of aged degus that show AD-like behavioral deficits and correlative neuropathology, our findings establish outbred degus as a natural model of sporadic AD and demonstrate the potential importance of wild-type outbred genetic backgrounds for AD pathogenesis.


Assuntos
Doença de Alzheimer , Octodon , Animais , Humanos , Idoso , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Placa Amiloide/patologia , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...